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Analysis of the Finite Element Variable 
Penalty Method for Stokes Equations 

By Haroon Kheshgi* and Mitchell Luskin** 

Abstract. We give an error analysis of the finite element variable penalty method for Stokes 
equations. It is shown that the variable penalty method is of higher order than the standard 
penalty method. 

1. Introduction. Stokes system for viscous, incompressible flow is given by 

(1.1) -V * D(u) + Vp = f, x E Q, 

V-u=O, x Q, 

where u = (u1, u2) is velocity, p is pressure, f is a given body force, Q is a bounded 
domain in R2, and 

D () (auj au/ 1 52 

2 a 
(V - D)i= E DX Dip i = 12. 

j=1 I 

The penalty method for Stokes equations replaces the continuity equation 

V * u = O 

by the perturbed equation 

(1.2) V u= -Ep, x E Q. 

where - > 0 is a small parameter (see the references in [3], [9]). The purpose of 
introducing the approximation (1.2) is that it allows the pressure variable to be 
eliminated from (1.1) to give the "simpler" system of equations 

(1.3) D(U) - ( 1V U) f xE 

In this paper, we analyze a related perturbation method, the variable penalty 
method, which replaces the continuity equation by 

(1.4) V U = -eqPh P 5 x E Q. 
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where 1qzh(x)j < 1, x E Q, and where Th alternates sign on a grid of size h. This 
perturbation method also allows the pressure to be eliminated from (1.1) to give the 
system of equations 

(1.5) V D( ) ( U = f, itGU 

The penalty method is often used to eliminate the pressure unknowns from the 
linear system of equations which is obtained from finite element (or finite difference) 
discretizations of Stokes equations [4]. Similarly, the variable penalty method can be 
used to eliminate the pressure unknowns from finite element discretizations of 
Stokes equations. Recent numerical experiments have shown that the finite element 
variable penalty method is more accurate than the standard finite element penalty 
method [5], [6], [7]. The purpose of this paper is to explain these results by giving 
error estimates for the variable penalty method that are of higher order for the 
velocity than those which can be obtained for the standard penalty method. We also 
prove that a higher-order method for the pressure can be obtained if the computed 
pressure is appropriately smoothed (or post-processed). 

References for known results will often be to the texts, [3] and [9], rather than to 
original papers (which are listed in the bibliographies of [3] and [9]). 

2. Definitions and Main Results. We assume that ? has a C' boundary, aQ, which 
is the union of an interior closed curve, rl, and an exterior closed curve, r2. 

FIGURE 1 

We will be interested in the boundary-value problem 

(1D(u)-pI)n=O, xE rl, 
u=O, GEr2 

where n is the unit exterior normal to F1. This choice of topology for ? and this 
choice of boundary conditions guarantees that (1.1) has a unique smooth solution 
for smooth data. Thus far, we have been unable to analyze the variable penalty 
method when the values of the velocity are given on the entire boundary, although 
the variable penalty method has been tested successfully for this boundary-value 
problem in numerical experiments. 
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For scalar-valued functions E, q L2(g) we define the inner product and norm 

(e , = t -q dx, 1||11| = (ts t). 

We denote by Hk( 2), k a nonnegative integer, the space of functions 

Hk(Q) = Ee L2(Q) D"t E L2(Q) for jal k} 

with norm 
c, 12 

1t k = I{Datl 
jaI 6k 

We wish to also extend the above definitions in the usual fashion to vector-valued 
functions v: Q R2, and we denote the resulting spaces by L2(g)2, Hk(Q)2, etc. 
For v: Q -- R2, 0: Q- R, and 1, m > 0 integers we define the norm 

II(v, ()IIm = I2vII1 + 1111i2m v e H'(U2)2, t E Hm(Q). 
Finally, it will be useful to define the spaces 

Hb (Q) = {v E Hl( )2 v = Oon r2}, 

and 

Y"b {(V, g)Iv E Hb(0) andg E L2(Q)}. 

We next define the continuous bilinear forms 

a(w,v) = (D(w), D(v)), w,v e H'(0) 

b(r, v) = (r, V v), r e L2(Q), v E Hb 
B((w, r), (v, q)) = a(w,v) - b(r,v) - b(q,w), (w, r), (v, q) EE 

Let co > 0 be such that 

B ((w, r), (v, q)) < coil (w, r) 11 loll (v, q) 1l'o,o (w, r), (v, q) E- Ylb . 

Since the divergence operator is a map from Hb,(2) onto L2(Q), the analysis in [3, p. 
50] shows that there exists a positive constant, cl, such that 

(2.1) sup B((w, r), (v, q)) > cl (w, r) 1jlj0, (w, r) E %b. 
<v, q) e* 11(v, q) 11lo 

Now suppose that f E L2(Q)2. It then follows from (2.1) [3], [9] that there exists a 
unique (u, p) E rbSO that 

(2.2) B((u, p), (v, q)) = (f,v), (v, q) e 

We call (u, p) E Y/ the solution to (1.1). 
To approximate the problem (2.2) we let h denote a discretization parameter 

tending to zero, and we let Xh and Mh be finite-dimensional subspaces such that 

Xhc Hbl () and MhC L2(Q). 

Also, let 

<lbh = Xh X Mh 

We assume that cl can also be chosen independent of h so that 

(2.3) sup (' el1 (Wh, rh) IlI O, (Wh, rh)e E bh 

<h,q.4 > -F '"h vh qh) 
v n.1 1, 
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a 

FIGURE 2 

The classical finite element solution to Stokes problem is (Uh, Ph) E 1bh such that 

(2.4) B((Uh, Ph)' (vh, qh)) = (f, Vh), (vh, qh) E Ybh 

Many of the classical finite element spaces Xh and Mh, properly modified at the 
boundary, can be shown to satisfy the hypothesis (2.3). For example, let ? be an 
annulus and let { h) } be a uniformly regular family of triangulations of Q such that 
the triangles bordering the outer boundary are pie-shaped and such that the triangles 
bordering the inner boundary have curved boundaries as shown in Figure 2. 

We then set Mh to be the space of functions which are piecewise constant with 
respect to the triangulation, Yh. We further set Xh to be the space of continuous 
functions, wh(x), which are piecewise quadratic with respect to the triangles which 
do not border the outer boundary. For triangles, K e -h, which border the outer 
boundary (see Figure 2), we restrict wh(x) to be quadratic in the inscribed triangle 
K' c K with straight edges and vertices [a,, a2, a3] and to be zero in K - K'. It can 
be shown [2] that there exists a positive constant, c, independent of h, such that for 
w(x) e Hbl(Q) n H 2()2, 

inf 1w - whit1 < chljwjj2. 
Wh E Xh 

The argument in [3, p. 76] can then be used to prove (2.3). Clearly, this argument can 
be extended to more general domains, Q, such as domains which are diffeomorphic 
to an annulus and which have a convex outer boundary, 172, and to many of the 
other classical finite element spaces Xh and Mh which give stable approximations of 
Stokes equations. It follows from (2.3) that (2.4) has a unique solution (Uh, Ph) l bh 

and 

(2.5) IIU - U h, p - Ph) II 0 -< (I + Co inf II(u - vh' p - qh)IIL1,0. 
( 1 )(Vh , qh> bhh 

The penalty method is to approximate the solution to (2.4) by the solution 

(Uhe Phe) E 'bh to 

(2.6) B((Uhe, Phe), (vh, qh)) 
- 

c(Phe, qh) = (fVh), (vh, qh) bh 

where c > 0 is a small parameter. It follows that 

(2.7) b(qh,uh,) = -e(Phe, qh), qh e Mh- 

We can define the discrete divergence operator, Vh Xh Mh by Vh Wh = rh, 

where 

b(wh, qh) = (qh, Vh * Wh) (qh, rh), qh E Mh, 

and then (2.7) is equivalent to 

(2.8) Vh * UhE CPhe- 
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We can thus use (2.8) to eliminate Phe from (2.6) to obtain the finite element 

approximation of (1.3) 

(2.9) a(UheVh) + (Vh * Uhe Vh ) Vh (f v Vh Vh E Xh. 

If the pressure space, Mh, is a space of discontinuous, piecewise polynomials, then 

Vh Vh can be constructed locally on the elements. Thus, we see that the penalty 
method can be used to eliminate the pressure variables from the discrete equations 

to reduce the size of the system of linear equations to be solved as well as the 

bandwidth, and the pressure variables need never be included in the assembled 

matrix problem [4]. 
The following approximation theorem is now well-known (although our proof 

may be new). 

THEOREM 1 [3]. If 1Ej < cl/2, then the penalty method (2.6) has a unique solution 

(Uhes Phe) e 1bh and we have the estimate that 

U he, p - 
PhE)+ 1) inf 

( 
- Wh, 

P 
- rh)11,0 II~~u Ph~~)II1,o ~~ 2(c0+ KWh , rh >EY",bh 

(2.10) + 

+ 2 
li 

? 
II1 

1 

Cl 

However, we must consider round-off error in addition to approximation error, 

since the linear system (2.9) must be solved in practice by digital computers in 

floating-point arithmetic, and it is observed in practice that the round-off error for 

the solution of these linear systems by Gaussian elimination is O(1/E) [4], [5], [6], [7]. 

This can be explained theoretically by noting that the condition number of the linear 

system (2.9) is O(1/E). Hence, the penalty method is sufficiently accurate for only a 

restricted range of the parameter, E. Further, it may not be possible to achieve 

sufficient accuracy for any E with the penalty method for some problems, especially 

if one is using a computer with a small word length. 
The variable penalty method is to approximate the solution to (2.4) by the 

solution (Uh , Ph,) E O'fbh to 

(2.11) B((UhE Ph,) KVhy qh)) - E(9hPhem qh) = (fV) (vh, qO) E fbh 

where E is a small parameter and qh is a measurable function satisfying 

(2.12) lzph(x I < 1, x GE U. 

We will show that the approximation (2.11) is of higher order than (2.6) if there 

exists c2 > 0, independent of h, such that 

(2.13) f 
99h(dX < C2hf lvjdx 

for all functions t satisfying 

f V Idx < x. 

It follows by arguments similar to those for the standard penalty method that 

(2.14) b (Uh, qh) = -E(ThPhey qh) C hE Mh , 
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so 

Vh *Uhe = -'Ph(q9hPhe), 

where Ph: L2(Q2) -_ Mh is the standard L2(Q)-projection operator. We shall assume, 
henceforth, that 
(2.15) Thqh E Mh for qh EMh, 

so 

(2.16) Vh * Uhe = &P--hPhe- 

Thus, we can use (2.16) to eliminate the pressure from (2.11) to obtain the following 
finite element approximation of (1.5) 

(2.17) a(UhoeVh) 
+ 

I 
eVh Uhe, Vh h) Vh (fv), Vh e- Xh. 

In our numerical experiments [5], [6], [7], we have used discontinuous, piecewise 
polynomial functions of fixed degree with respect to a triangulation of size h for Mh, 

and Th has been a piecewise constant function with respect to that triangulation [5], 
[6], [7]. Obviously, (2.15) is satisfied in this case and the variable penalty method is 
no more difficult to implement than the standard penalty method. There are many 
ways to construct Th so that (2.13) is valid. A simple choice for ) on a rectangular 
grid is to let Th = 1 or -1 on alternating rows (see Figure 3). 

In Section 3, we prove a result for the variable penalty method which is identical 
to the result for the standard penalty method, which we have given as Theorem 1. 

THEOREM 2. If cJ, < cl/2, then the variable penalty method (2.11) has a unique 
solution (Uh., Phe)> E lbh, and we have the estimate 

II~ -Uhe P- PieI~i~ + 2(co0+ cD ) Kih, rhe Uh Wh, P -rh) 1110 |(U U hE P PhE) 11 o ( C )<h >Eh 

+ tpt 11 
C1 

Ph = (PFh = (GUh 3 

(Ph = (Poh = (Poh 

(h = (PQh = (PQh= 

FIGURE 3 
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To demonstrate that the variable penalty method is of higher order than the 
penalty method, we estimate the error in the velocity in L2(Q)2. We have assumed 
that the boundary of Q2, ai2 = T' U T2, is smooth so that there exists C3 > 0 such 
that if Kv, q) C L2(Q)2 x H1(Q), then the unique solution Kz, m) C Y?b to the 
problem 

(2.18) B((w, r), (z, m)) = (w,v) +(r, q), (W, r) E Ybq 

has the property that Kz, m) e H2(Q)2 x H1(Q) and Kz,m) satisfies the a priori 
estimate 

(2.19) 1(z, m) 112,1 < C3II(V, q) Io,1. 

We also now assume that there exists C4> 0, independent of h, and r >? 1, such 
that our subspaces Xh and Mh satisfy the approximation property that for each 
KV, q) e -"b ln Hrl (S2)2 x H (2) there exists vh*, q ) C Ybh such that 

(2.20) 11(V - Vh, q - qh)I1,0 < c4h sIl(V, q)lis+?, s 0 < s < r. 

The piecewise constant space, Mh, and the continuous, piecewise quadratic space, 

Xh, described above satisfies (2.20) with r = 1. Isoparametric spaces which satisfy 
the zero boundary conditions on approximate domains and the associated analysis 
[2] are required to obtain higher-order approximation properties for curved 
boundaries. 

In the following, it will be convenient to use a generic positive constant, c, which 
is independent of h and E, but which can change from equation to equation. In 
Section 3, under the above hypotheses, we will prove the following result. 

THEOREM 3. Let I 1 < c1/2. There exists a positive constant, c, such that if the 
solution Ku, p) to (2.4) satisfies Ku, p) > Hr+l(Q)2 X Hr(S2), then 

(2.21) 11U - Uhjl < c(llhIl(u. p)L2,1 + 1d 121PI, + hrlIIl(U, P)Ilr+lr- 

To achieve a higher-order method for the pressure we define 

(2.22) K(x) = K(xl, x2) = / (2h)2, if 1xil < h, i = 1, 2, 
0, otherwise. 

Let Q c c U. Then 

K Ph,(x) | K(x - Y)PhE(Y) dy, x c Q. 

is well-defined for A2ih < dist(Q2, ai). We will prove in Section 5 under several 
additional hypotheses which are valid for finite element methods, when the triangula- 
tion is regular on f2, that if Qi1 c c Q2, Ku, p) c Hr+2(0)2 X Hr+'(0), and h is 
sufficiently small, then 

11p - K * PhEL1Q? 

(2.23) < (lclhII u, p)1l2 + 21pI+ h211pII2 + hr111 (U, P)lI? i) 

where 21 = f11 2 dx. 



354 HAROON KHESHGI AND MITCHELL LUSKIN 

These estimates for the variable penalty method demonstrate that it can be 
expected to achieve a desired accuracy at a larger value of /EI than is achieved by the 
standard penalty method. Since it is equally sensitive to round-off error [5], [6], [7], 
the variable penalty method achieves a desired accuracy for a wider range of 14E. 
Further, for a given triangulation, the desired accuracy may be obtainable by the 
variable penalty method and may not be obtainable by the standard penalty method. 

3. Main Estimates. Let 

(3.1) B,((w, r), (v, q)) = B((w, r), (v, q)) - c(9hr, q), 

(w, r), (v, q) E Fb 

It follows from (2.3) and (2.12) that if jcj < c1/2, then 

(3.2) sup BE(K Wh r ), KV, qh)) 1I (Wh rh) I| 1o, (Wh, rh) E tbh 
<Vh v qh > E=lhh |(* h l, 

Now if KWh, rh) E *bh' we have from (2.2) and (2.11) that 

(3-3) BE((UhE - Wh, Ph, 
- 

rh), (vh, qh)) 

B,((u - 
Wh, p - 

rh)', (vh, qh)) + e(chp, qh)9 (vh, qh) E bh 

Thus, it follows from (3.2) that if IdE < c1/2, then 

2 II(UhE - Wh, Phe - rh)I1|1O < (CO + 0)II(U - Wh, P - rh) 111O + I'd IlPil 
Hence, we see that 

II~u- UA, P Ph~)I1, I + 2(co + e) in 
|| (U - 

USED P PhE) AL'O ( Cl ) <Wh e r IKU - 
Wh, p - 

rh)IE lO 

(3.4) C 

+ 2 11 11 l 
Cl 

This proves Theorem 2. We also note that since (Ph was only required to satisfy the 
bound Iph(x)1 < 1, x e Q, in the above argument, this also proves Theorem 1. 

For ( e L2(g), we define the norm 

II4II-i = sup (e 0) 

Now for <v, q) e L2(U)2 x H'(9), let <z, m) E J/'b satisfy 

B((w, r), (z, m)) = (w,v) +(r, q), (w, r) E 

Then (e, E) = Ku - U1hE P - PhE) satisfies 

(e,v) + (E, q) = B((e, E), (z, m)) 

(3.5) = B((e, E), (z - 
Zh, m - m*)) + B((e, E), (Zh, mA)) 

= B((e, E), (z - Za i - 
mO)) 

- -(PAh , m), (ZhA, mA) e bh- 

Now by (2.9) and (2.20), we can choose KZa, ih) E h bh so that 

B((e, E), (z - Za i - mA)) 

(3.6) < colle E) F)ll oII (Z - Zh I M-On)lol0 

< C0II(e, E) 1 oc4hIzI(z, m) 112,1 < coc3c4hll(e, F) E1110 1(V, q)110,1. 
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Also, we can assume that KZh mh>) C Y'bh iS chosen so that 

-c(phPhE, mh) = -E(hP9, mh) + c(ph(P - PhF)9 mh) 

= -E((php, m) + EONP9 m - mh) + c(ph(p - Ph') mh) 

(3.7) < 2C2jc-hjjpjjjjjmjjj + C41c-hjjpjj 11m|ll + C41C| IIEII 1m|llo 

< (2C2jc-hjjpjjj + C41c-hjjpjj + C41cE|1|E|)C3II(v, q)110,1. 

Hence, letting v = e and q = 0, we obtain from (3.7) and Theorem 2 that (with 

I -l < c1/2) 

3 1ell < C0C3C4h||(e, E) I110 + 2C2C3|j-hjjpjj1 + C3C41c-Ihllpl + C3C41cI IIEII 

(<8 c(1WIhIl(ug P)I2,1 
+ 

1c121IpII + hrI 11(U, P)Ilr+lr)- 

This proves Theorem 3. 
The following lemma also follows from the estimates (3.5), (3.6), and (3.7) by 

letting v = 0 and q c H1(Q) be arbitrary. 

LEMMA 1. Let IEI < c1/2. There exists a positive constant, c, such that if Ku, p) c 

Hr+l(S2)2 X H r(S2), then 

(3.9) IIP - Ph1l-1 < C(k-hII1(u P) I2,1 + |II2pI + hr l(U, P)Ilr+lr)- 

4. Estimates for the Smoothing Operator. In this section, we recall some estimates 
and relations for convolution with 

K(x) = K(xl, x2) = {(2h) 2 if IX11 IX21 < h, 
0 otherwise. 

The proofs of these results can be found in [1]. We note that 

J2 K(x) dx = 1. 

We extend the notation of Section 2 by defining for 9 c QS2 and k a positive 
integer, 

1112 2 2dXq L2 (_) 

11f112 __ID a 
_11 __ H k(_ ), 

jal <k 

1111 lk= SUp ( 2 (_q) ) 

Hok (_q) I'q11.9 Ik 

where 

Hok( 9)= closure of Co (3) in Hk(_q). 

We note that obviously 

|W|9,-k < 110|,-k- 
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Now for dist(x, aQ) > V2ih, recall that K * ((x) is well-defined and 

K *(x) = (2h )2f1+h jX2+h dY1y Y2) dy dy2. 
x1-h x2-h 

Now it is easy to check that if dist(x, aQ) > V2ih, then 

a X2h_________________-_______-_______ 
axl Kf * (x) = (2h) - 2 [(x1 + h, Y2) - 1 2-h~~~~~~~2 

= Li *alh(X), 
where 

L1(x) - J8(xl)/2h, -h < X2 < h, 
O otherwise, 

and 
_ ((x1 + h, X2) - O(X1 - h, X2) 

3l~h((x)= -2h 

Here, 8(xl) is the Dirac delta function. A similar definition can be given for L2(x) 
and a2,h (x) so that 

a K* (x) = L2 * a2,h (X) 

We have the following lemmas [1]. 

LEMMA 2. If 9 c c Q, then there exists a constant, c5, such that for h sufficiently 
small, 

(4.1) jt- K * 11.q c5h2fI2, c H2(EQ) 
LEMMA 3. If 90 C C 9 C Q, then there exists a constant, C6, such that 

(4.2) 110l9 < C61(69i-1 + ?E _), ( L 91)E 

LEMMA 4. If 90 c c c Q2, then there exists a constant, C7, such that for h 
sufficiently small and cL2(91) 

I~*( l < c7|?|,1, i = 1, 2, 

(4.3) K * ~1.-i_ < 92 |K * 1|9o,-i < C716|9,-1- 

Now let q C c c 9 c and suppose that h is sufficiently small. Then we have 
that 

IIP - K*phJ19o < IIP - K * pljs0 + IIK * ( P Ph) E)IIo 

< c5h 2IPII2 + IlK *(p- Phe)II0o 
and from Lemma 3 and Lemma 4 we have that 

IIK * (P p-Phe) 119 < C6 (IK*( P PheI1,-1 + ax -K*(P -Ph, ) 
2 

(4.5) =c6 IK*( * (P Phe)L91,-1 +E Lij * aj h(P PhF) 1.-1 
i=1 

s< c6c7(IP ""PhEL?,-1 + E a~ P? ?_ 
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Thus 

IIp - K * PheI1.0 < c5h'IJPij2 + C6C71P - Phi.,-1* 

(4.6) 2 

+ 67EIa~ - PhE-)L19,1. 
i=1 

Now, by Lemma 1, 

(4.7) P - Ph19,-l < IIP - PhJII-1 

< C(le~h/j(u, P)1121 + Jej IIPII + hr lll(U, P) llr+i,r) 

The next section will be devoted to estimating 

(4.8) -laih(P- Phe)I9!-ll 

5. Estimates for Difference Quotients. The results in this section are motivated by 
the interior estimates for difference quotients for Ritz-Galerkin methods developed 
in [8]. We assume that there exists i2 c c Q with the property that for h sufficiently 
small, 

(5.1) aih)h =?, i= 1,2, 

where 

ai,*t(X 
x 

= 
+ hei) 

- 
(x -he,) xEQ ai~hOX) 2h XGE, 

and el = (1, 0), e2 = (0, 1). We note that if Ih(x)hI 1 and ph alternates sign on the 
rows of a rectangular triangulation (see Figure 2) in a neighborhood of 2, then (5.1) 
is satisfied. 

We define for arbitrary open sets 2 c c 2, the spaces 

= {(v, q) E -b Isupp vh, q) C 

and 

)1h (?:) {(vh qh) E bh I SUPP (vh qh) -C9 } 

and we shall also assume that Q2 C c Q has the property that for h sufficiently small, 

(5.2) a1,h((Vh, qh)) ? 'bh for (vh, qh) e Ylh(Q)- 

We note that (5.2) is valid for the usual finite element spaces of piecewise 
polynomials with respect to a triangulation which is regular in a neighborhood of Q2 
[8]. 

It then follows from (5.1) and (5.2) that for e = u h-,u and E = p - we have 

(assuming h is sufficiently small) 

B(Kai he, a8,hE), (Vh, qh)) 

(5.3) = -B((e, E), (aiJhVh, ai,hqh)) =c( Wh Pho aihqh) = -(aih (Th PhE) , qh) 

= -c(9h(x + hei)aihPh., qh), (Vh, qh) E h 

We also need to assume that for arbitrary open sets 1 c c 2 c C S2 there exists 
a constant c8 > 0, c8 = c8(21, 2), such that for h sufficiently small and (v, q) E 

V(91) nf Hr+l(g2)2 X Hrf(Q) there exists (vh, qh> E Yh(2) with the property that 

(5.4) ||(V - vh, q- qh)||1,0 < chsh1v9 q)0IS+l'S ? < s < r. 
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We further assume that if w C CO'(31), then there exists a constant c9 > 0, 

c9 = cg(91, 9, w), such that for h sufficiently small and (wh, rh) C f(9), there 
exists (Vh, qh) e f h(s9) such that 

(5.5) Il(wwh - Vh, wrh - qh) 111,0 < c9h l(wh, rh)IllO. 

We note that these approximability assumptions hold for the spaces Mh and Xh 
discussed in Section 2, as well as for other stable finite element spaces used to 
approximate viscous, incompressible flow. 

If q is an annulus, let its inner boundary be denoted by atj, and let its outer 
boundary be denoted by a9out We define the spaces 

Hbl(2q) = {v c H1(9 )21v=O on a-9u}, 

b(-9) = {(v,q)jv e Hbl(q) andq c Le2(_) 

Henceforth, open sets 20 c c Q will be annuli. For v: - > R2,: 2 -- R, and 
1, m >? 0 integers, we can define the norm 

11K(V 2)II lm = l jVllj1 = llvii m v E H'(_)2 Hm ( 
We also extend the definition of negative norms to vector-valued functions and we 
define 

2 2lw112- 
IK W, r)I l,-m = |lWII.9,l + llrll ,-m, 

1(w, r)I -,m = IwI.,_I + Irlq,-m. 

We can define B((w, r), (v, q)) for (w, r), (v, q) C Ylb(9) as in Section 2 with Q 
replaced by 9. As before, it is known that there exists a positive constant, 

cl = cl(?), such that [3], [9] 

sup B((w, r),(v, q)) > c) 1(w, r) (w r) E Yb(9) 
<V, q) Eb( ) 1 I(V9 q> | 

and a positive constant, co = co(9), such that 

B((w, r) , (v, q)) -< co~ll(wq r) 11.91,011(v, q)lll (wr),(v,1) fb9 

It is also known that the regularity result (2.19) holds on with C3 = C3(3). 

Finally, we will set 

=) {Kwh, rh) E Sbhlwh E Hb(2) andsupprh C 2} 
and suppose that the stability result (2.3) holds for Ylbh(-9) with cl = cl(?) > 0, 
i.e., for h sufficiently small, 

sup B ((wh , rh ) (Vh qh> C, 11(Wh, rh) 11,9,1,0 

(5 .6) <Vh , qh)>Ezh() | (Vh 9 qh ) 1.9,1 0 

(Wh, rh) E Ybh 

We note that there exist families of triangulations, { Fh }, for which the properties of 
the triangulation with respect to the annular domain, Q, described in Section 2 hold 
for 9. In that case, the argument to prove (5.6) for the constant space, X'h and the 
quadratic space, Xh. is identical to the argument given to prove (2.3). We will prove 
the following result for the approximation of the pressure by the variable penalty 
method under the above hypotheses. 
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THEOREM 4. Let IEI < c1/2 and let Q1 C C Q2. There exists a positive constant, c, 
independent of h and E, so that if Ku, p) E Hr+2(S2)2 X Hr+ l() and h is sufficiently 
small, then 

IIP - K * Ph,,|19, 

(< 7 c( IhI1(u, P)122 + 112 2 Ip1 + h2I pl2 + hrlu P)lr?2,r) 

Now any Q1 c c Q c c Q2 can be covered by a finite number of annuli, each of 
which is compact in Q2. Thus, for the proof of Theorem 4 we may assume that Si1 is 
an annulus. We will prove Theorem 4 in a sequence of lemmas. 

LEMMA 5. Let 90 and 9 be concentric annuli, 90 c c 9 c c Q2. Then, for h 
sufficiently small, there exists a positive constant, c, such that 

ai ,he, ai,hE) I ,0,-1 

(5.8) < c(h11(aihe aihE)IIjlO + IKai,he, ai,hE)I,1-1,-2 

+ IhI Il(u P)IL22 +2 
Proof of Lemma 5. Let 9' be an annulus such that 90 c c 9' c c 9 are 

concentric annuli and let w E CO&(9') with w 1 on -90. Then, we have 

I|I ( ai, he . ai, h E) I 1.90,0,- < I1 I wai, he . Wai, hE) I1.9,0,_ 1 

(5.9) - sup (Waihev) +(WaihE q) 

<V, q)> eL2(.9)2 X H1(2) (V9 q> 11 

Now let (z, m) E Yl"b(9) be the solution to 
(5.10) B((w, r), (z, m)) = (w,v) +(r, q), Kw, r) E Yb(9)9 

where (v, q) E L2(9)2 x H1(9). Then, 

(5 .11) 1 1 (Z, m) 11|9,2,1 < C3 11 (v , q) Il 
Hence, for (v, q) E L2(_)2 x H1(9), 

(Wa3he,v) +(Wai hE, q) = B((Kawhe, WaihE)' (Z, m)) 
(5.12) = B((aiKhe, aihE)', (wz, WM)) + I((aihe, aihE) . Kz, inm)) 

where 

I(Kaihe, ai3hE)', (z, m)) 

2(3w a \ / a (aw aw 
- 2( 3.Xai hej, Djk(Z)I + 2aihej1 aXk Zk+ k kZ 

(5.13) 3Xk k'/ 
a 
X1 J~ 

+((ai3hE)Vwz) +(a3'he,(Vw)m) 

< C|I ( ai, he ai, hE) 1.9- j- 2 11 ( z M ) 11.9,2,1 

<s cC31(i he, ai,hE)'E I,1 K1z, in)' II ,2,1 

Now, by (5.3) for arbitrary (Zh, Mh) E Yh(9) 

(5.14) B((Kiahe, aihE), (wz, wm)) 

= B((ai he, aihE), (wz - Zh, WM Mh)) -cPh~aihPho, Mh)- 

Now, by (5.4), we can choose (Zh, Mh) E Yl'h(9), so that 

(5.15) II wz - Zh, wm - min)' 1I10 < cshIIlwz, wm)'II,21. 
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Hence, 

B ((aihe, aihE), (wz - Zh, Wm - mh)) 

(5.16) < cOil (aihe, aihE) 1.,1,ocshll(wz, to m) 119,2,1 

< c h|| (ai he, ai,hE) 11|9,1,011 (v, q) 11.9,0.1- 

Further, 

-(Phai,h PhE? mh) = 
(hai ,h Phe (OM - mh) ( hai,h Ph' ?Om) 

- (phai,h p, Wm - mh) + (Phai h ( PhE - p), wm - Min) 

((Phai,h P. I (O) + (ThPai,h (P p -Ph), (OM). 

Now, by (5.15), 

(Thai~hP, CJM - mh) < c|p|l"ICm -m hII < chIIplIIII(Wz, (m)jjI.9,21, 

(cphaih(PhE - p), (OM - MO) h lwM -MhlI $< CIIEI ll (liz, cm) 11) ,2,1 

by (2.13), 

-(@haihP, (iM) < ch IPII211Cm ||.9,1, 

and 

(Thaih(P- Ph)D (iM) = -(Th(X + hei)E, ai,*hM) < c||E|II| mII.,i. 
Thus, 

-(Phai,hPhE, mih) < c(hIlpII2 + IIEII)II(z, M)l621 

< C(hJ|PII2 + IIEII)II(v, q)I1,01. 
The result of Lemma 5 now follows from (2.20) and Theorem 2. 

Now, for h sufficiently small, by Theorem 3 and Lemma 1, 

(5.17) I(aihe, ai,hE) 1, l.2 cjj, E)lo 1 
< cjE~h|(u, P)!|21 + CE| 2IIpII + chr1l(u, P)Ilr+i r' 

Hence, we have from Lemma 5, that 

11( ihe, ai,h E) 119o0,07_1 

(5.18) < c(hII|(aihe, ai,hE) 11l.,lO + IelIl (U, p) 112,2 

+ lE2|IpII + hr+ 1 |I (U, p) ||r+1,r)' 

Thus, it remains to estimate hjIlaIjhe, ai hE)I Ilo. 
We first prove the following lemma. 

LEMMA 6. Let 90 cC c 9 be concentric annuli. Then there exists a positive constant, 
c, such that for h sufficiently small and Kwh, rh) e Y'h(g) satisfying 

B((wh, rh), (vh, qh)) = 0, (vh, qh) E Ih(9) 

we have 

(5.19) 1I (wh, rh) II .0,1,. < c ( hI(wh, rh) II?,1Jo + I (wh, rh) 19,0o l). 
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Proof. Let 9' be an annulus such that 90 c C .' C C 9 are concentric annuli, 
and let wEo Co (9') with co 1 on 90. Let KWh, Rh) Y rbh(-9) satisfy 

B((cowh - Wh, (orh - Rh), (vh, qh)) ?0 (vh, qh) e rbh(9). 

Then by (5.5) and (5.6), 

cowh - Wh, corh - Rh)II9lO 

(5.20) + Co) inf II(owh - vh' ?Orh - qh) 1191,0 
C1 (v~hE b(9 

ch || Iw* rh) 11l,l o, 
Thus, 

| Wh I rh) .9 o ,1,0 C -o( Wh 'torh) 91,0 , 

(5.21) <IIwwh -Wh, corh -R h)II@,1,O + II(Wh, Rh) II?10 
< ch II(wh, rh)191,0 + 1I(Wh, Rh) 119,10 

Now, by (5.6), 

(5.22) ||(Wh, R*)ll~l~o < cl sup B((Wh, Rh), (Vh, qh)) 

Vh2 q Ih> EI (vh, qh ) 11S,1U0 

and for (vh, qh) E rbh(-i), 

B ((Wh, Rh), (vh, qh)) = B(( o.wh, corh), (vh, qh)) 

= B((wh, rh), (wVh, w qh)) + I((wh, rh), (vb, qh)), 

where 

I((Wh, rh), (Yb, qh)) =2 Wh, Pjk(Vh 

I' ai/aX, 3o i 
(5.23) h2tWhj, a jja Vhk + jX Vhj)) 

+(rhV'W,Vh) +(wh, Vwqh) 

< c| (wh, rh) [ vho,Jl (Yb, qh) 112,1,0 

and by (5.5) we have for (Vh, Qh) G rh (s9) C *bh(-)) 

B ((wh, rh), ( ovh o Wqh)) = B((wh, rh), (OVoh - Vh, toqh - Qh.)) 

(5.24) C1c1 (Wh, rh I |9>,1c,0 1 ,q* l i 

ch|:| (Wh, rh) 0116 ,0|1 (Vh, qh) 11-9,1,0' 

Thus, it follows from (5.22)-(5.24) that 

(5.25) 1j (W,, Rh) 1,0 c (hII (wh, rh) 110 + K (wh, rh) 209 o ) 

The result of Lemma 6 follows from (5.21) and (5.25). 
Finally, we prove the following lemma. 

LEmmA 7. Let -90 be an annulus. Then there exists a constant, c > 0, such that for h 
sufficiently small, 

(5.26) hlI(ajhe ,,,hE)II|,,,Oj0 < c(Ie hII|(u, P)11P2, + IeIIPII1 + hr~lllu, P)I||?2 1) 
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Proof. Let -9, .9', and 9 be annuli such that .9 C C 9, C C .' C C 9 C C Q 
are concentric annuli, and let w E Co'(9') with w 1 on 9'. Next, let (Wh, Rh) e 

1"bh(29) be the solution to 

(5.27) B((Wh, Rh), (vh, qh)) = B((walhu, 8aih P) ( KVh, qh)) 

+e(phaihPhE, qh), (va, qh) E bh 

Then it follows by (5.6), the stability of B on Y'bh(-9) X Y'bh(-9), that 

~ai hU - Wh, WaihP - Rh) 1?,l,0 

( 
Co 

) f Ivq>e K(?) ai,(hU Vh IUV, Xai hP - qh) 

(5.28) + llailhPhEl9 

< ChrII(u, P)llr+2,r+l + I 
(laiah(Ph8 

- P)IL + IlaihPII.) 

ril 
\II 21e1 < c hu P)|r+2lr+l + I|E|| + cjel IIpII. 

We have, by the triangle inequality, 

hll a ,he, ai hE)1.90,lO, < hll(aihU - Wh, ai,hP - 
Rh) llo l0O 

+ hll(Wh - aihUhe Rh ai,hPh,)llo0,1,O 

(5.29) < c(lelhlh(u,p)ll2,1 
+ lel2llPl1i + hr+1ll(u, P)ll?+2,r+?) 

+h||(Wh - aijhUh,, Rh - aih Phe) ll1 0,1,0 

Now 

(5.30) B((Wh - aihUh,, Rh - ahP he) (Vh qh)) 0 (vh, qh) E Ih(9)- 

Thus, by Lemma 6, 

l(Wh - aihUhe Rh - aihPhe)ll0ol1O 

< c(h|I(Wh - aihUhe, Rh - ai,hPhee) IIi,0 

+I (Wh - 
aihUheo 

Rh ai,h Phe)l.9,O,-i) 

(5.31) < Chl| ( aihe, ai,hE)I.9,1,O + cl(aihe, aihE) lo ,0,-O1 

+Chll(ai hU - Wh, aihRh - aihP) ll ,1,0 

+C (ai hU - Wh, aihRh - aih P)9t 160,1- 

< c||(e, E)191,0 + CIIK(aihU - Wh, WaihP- Rh) ll1,,0 

< C h IlI (u P) llr+2,r+1 + 1jI IEIIE II IPi) 11) 
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Hence, we have that 

hII(Wh - aihUhe, Rh - ai,hPhe)Io,1,O 

(5.32) < c(lelhil(u, P)121 + 1e12IIPII + hr+lll(u, P)I|r+2,r+l) 

The result of Lemma 7, (5.26), now follows from (5.29) and (5.32). 
We finally turn to the proof of Theorem 4. As we remarked earlier, since 9', 

' c c Q2 c c Q, can be covered by a finite number of annuli, 90, which are 
compact in Q, we may assume that Q' = go is an annulus. Now, since 9' = 90 c C Q, 

there is an annulus, Q, such that go c c 9 c c n and such that 90 C C 9 are 
concentric. It then follows from (4.6) and (4.7) that 

IIp - K * PheIIo < c(lIhllu, P) 112,1 + IEI IIpII + h211 p12 + hr~lIIu, P)Ilr+ 1,r) 

(5.33) 2 
)+C E a1ih(P - Ph,)119,-1- 

i=1 

Now from (5.18) and Lemma 7 we have for h sufficiently small, 

(5.34) Ilaih(P - Ph,)II,1 < c(IeIhII u, P)112,2 + IeI2IIpIIl + hr+II (u, P)Ilr+2,r+l) 
Thus, from (5.33) and (5.34), we obtain 

IIp - K * PhIIo 

(5.35) < c(IeIhII(u, P)112,2 + 161 IIPI1l + h211p112 + hr+lI1u, P)Ilr?2,r| ) 

This completes the proof of Theorem 4. 
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